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In this talk, I will explain the first paper of Prof. Mochizuki’s theory of
IUT. The talk is divided into three parts as follows:

The motivation of Hodge theaters

The goal of Hodge theaters

The construction of Hodge theaters (in particular, the étale picture!)
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§1: Motivation of Hodge theaters
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F/Q: a number field

OF : the ring of integers of F

E/F : an elliptic curve s.t. E admits a semi-stable model E/OF

V(F ): the set of places of F

V(F )non,bad: the set of non-arch. places v s.t. Ev
def
= E|Fv has bad

reduction, where Fv denotes the local field at v

ℓ: a prime number distinct from pv for all v ∈ V(F )non,bad, where pv
denotes the characteristic of the residue field of Fv

htE : Faltings height of E

Goal: We hope that htE can be bounded for all elliptic curves satisfying
the above conditions.
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Note that Ev
∼= Gm/qZv ↞ Gm ⊇ µℓ for all v ∈ V(F )non,bad, and that

0→ µℓ → Ev[ℓ]→ Z/ℓZ→ 1.

Global multiplicative subspaces (=GMS)
We shall call H ⊆ E[ℓ] a “GMS” if H|Fv coincides with µℓ for all
v ∈ V(F )non,bad. This means that there exists a Galois étale covering
Y → E corresponding to H such that Yv → Ev is a topological covering
of dual semi-graphs for all v ∈ V(F )non,bad.

If “GMS” exists, then by some standard discussions of Diophantine
geometry, we may obtain that htE can be bounded. However, we have

#{E/F s.t. GMS exists}<∞.
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Goal of IUT: We want to do similar discussions for arbitrary elliptic
curves over number fields.

The first step: We need an analogue of “GMS” for arbitrary elliptic
curves.

IUT’s answer: It’s “Hodge theaters”
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§2: Goal of Hodge theaters

Reference
Section 1 of “S. Mochizuki, The étale theta function and its
Frobenioid-theoretic manifestations. Publ. Res. Inst. Math. Sci. 45
(2009), 227-349.”
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Local theory (over non-archimedean bad places)

ℓ >> 0: a prime number

p ≥ 3: a prime number s.t. p ̸= ℓ

k: a p-adic field

Ok: the ring of integers of k

X ∼= Gm,k/q
Z: an elliptic curve over k with bad reduction (i.e., Tate

curve)

X log: the log stable curve over k determined by the zero point of X

Moreover, we assume that
√
−1 ∈ k

X[2ℓ](k) = X[2ℓ](k), where k denotes an algebraic closure of k
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Then we have the following commutative diagram of cartesian squares of
tempered coverings:

Ÿ
log µℓ−−−−→ Ÿ log

µ2

y µ2

y
Y log µℓ−−−−→ Y log

ℓZ
y ℓZ

y
X log µℓ−−−−→ X log Z/ℓZ−−−−→ X log

The above coverings are defined in the next page via a picture of special
fibers.
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The special fibers of the above commutative digram is as follows:

Yu Yang (RIMS, Kyoto University) Constructions of Hodge Theaters September 2, 2021 10 / 58



On the other hand, let us fix a cusp OX (i.e., zero cusp) of X. Then the
image of OX of X → X is the zero cusp (or the zero point) OX . The
curve (X,OX) can be regarded as an elliptic curve over k. Thus, we obtain

X log Z/ℓZ−−−−→ X log

±1

y ±1

y
C log degree ℓ−−−−−→ C log,

where C log def
=

[
X log/{±1}

]
and C log def

=
[
X log/{±1}

]
denote the

quotient stacks.

Moreover, there exists a unique irreducible component 0Xs
∈ Irr(Xs) such

that the reduction of OX is contained in 0Xs
, where Irr(Xs) denotes the

set of irreducible components of X.
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Let 0Ys ∈ Irr(Ys) be a lifting of 0Xs
. Then we obtain a labeling

Z ∼→ Irr(Ys)
∼→ Irr(Ÿs)

∼→ Irr(Ÿ
s
)

such that 0 7→ 0Ys . Moreover, we put

µ− ∈ X(k): 2-torsion point whose reduction is contained in 0Xs

µY
− ∈ Y (k): the unique lifting of µ− s.t. the reduction is contained in

0Ys

ξYj ∈ Y (k): j · µY
− (with the action of j ∈ Z ∼= Aut(Y log/X log))
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We have the following definition.

Definition 1

We shall call a lifting of ξYj ∈ Y (k) in Ÿ (k) an evaluation point of Ÿ log

labeled by j ∈ Z (
∼→ Irr(Ys)). Moreover, we shall call a lifting of an

evaluation point of Ÿ (k) labeled j in Ÿ (k) an evaluation point of Ÿ
log

labeled by j ∈ Z (
∼→ Irr(Ÿs)

∼→ Irr(Ys)).

Moreover, we have the following picture:
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We have the following diagram of special fibers:
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Non-archimedean Θ-functions
We put

Ÿ, Y, Ÿ, Y

the p-adic formal schemes whose Raynaud generic fibers are Ÿ , Y , Ÿ , Y ,

and whose special fibers are Ÿ
s
, Y

s
, Ÿs, Ys, respectively.

Write 0Ÿs
∈ Irr(Ÿs) for the irreducible component over 0Ys ∈ Irr(Ys) and

Ü ⊆ Ÿ, U ⊆ Y for the open formal subschemes such that

Üs ∼= 0Ÿs
\ Ÿ sing

s (∼= Gm), Us ∼= 0Ys \ Y sing
s (∼= Gm).

Then U is isomorphic to the p-adic formal completion of Gm,Ok
with

multiplicative coordinate U ∈ Γ(U ,OU ). Moreover, we put

Ü
def
=
√
U ∈ Γ(Ü ,OÜ ).
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We have the following function on Ÿ :

Θ̈(Ü) = q−
1
8 ·

∑
n∈Z

(−1)n · q
1
2
(n+ 1

2
)2 · Ü2n+1.

Moreover, we define a function

Θ
def
= Θ̈(an evaluation pt labeled by 0) · Θ̈−1

on Ÿ which can be regarded as an “ℓ-th root” of Θ̈ (in the sense of
cohomological classes). Note that there are exactly two evaluation points
labeled by 0 in Ÿs, and that we have

Θ̈(an ev. pt labeled by 0) = −Θ̈(another ev. pt labeled by 0).

Values of Θ at evaluation points

We put q
def
= q

1
2ℓ . Then Θ(an evaluation pt labeled by j) ∈ µ2ℓ · qj

2
.
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Let V(F )non,bad be the notation introduced in §1. Moreover, we denote by
Θ

v
the function defined above at the place v ∈ V(F )non,bad such that v is

not over 2. Then we have

±1 ±2 . . . ±j . . .

Θ
v
7→ q

v
q4
v

. . . qj
2

v
. . .

The Goal of Hodge theaters: Roughly speaking, Hodge theater (at
least, the étale part) is a virtual “GMS” for an arbitrary elliptic curve over
a number field which manages

Θ
v
-values for all non-archimedean bad places (with their labels)

via anabelian geometry.
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§3: Initial Θ-data

Reference
Section 3 of “S. Mochizuki, Inter-universal Teichmüller theory I:
Construction of Hodge theaters. Publ. Res. Inst. Math. Sci. 57 (2021),
3–207.”
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Firstly, we have the following notation:

F : a number field s.t.
√
−1 ∈ F

E : an elliptic curve over F s.t. E has stable reduction at all
v ∈ V(F )non

ℓ > 5 : a prime number s.t. ℓ ̸= pv for all v ∈ V(F )non,bad

K
def
= F (E[ℓ])

Fmod : the field of moduli of E

X
def
= E \ {OE}

C
def
= [X/{±1}]

Furthermore, we assume that

E[6](F ) = E[6](F ), where F denotes an algebraic closure of F

CK
def
= C ×F K is a “K-core” (i.e., a terminal object in the category

of étale coverings and quotients of XK over K)

F/Fmod is Galois

SL2(Fℓ) ⊆ Im(GF → Aut(E[ℓ]) (∼= GL2(Fℓ))
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Let XK → XK
def
= X ×F K be an étale covering with Galois group Z/ℓZ.

Note that #(Xcpt
K \XK) = ℓ. Just like the local theory recalled above, we

fix a cusp OXK
∈ Xcpt

K \XK and call it zero cusp. Then (Xcpt
K , OXK

) is
an elliptic curve over K. In particular, there exists a {±1}-action on XK .
Thus, we have

XK
Z/ℓZ−−−−→ XK

±1

y ±1

y
CK

degree ℓ−−−−−→ CK ,

where CK
def
= [XK/{±1}] denotes the quotient stack. Moreover, we fix a

non-zero cusp
ϵ

of CK (i.e., the image of a cusp ∈ Xcpt
K \ (XK ∪ {OXK

})).
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We put the following

V ⊆ V(K) : a subset s.t. the natural map V ↪→ V(K) ↠ V(Fmod) is
a bijection

Vbad ⊆ V : a non-empty subset s.t. for every v ∈ Vbad, the following
are satisfied: (i) E has bad reduction at v; (ii) Xv → Xv induces a
topological covering of their dual semi-graphs; (iii) the reduction ϵv of

ϵ is the cusp of C log
v labeled by 1 ∈ Fℓ/{±1} (∼= Cusp(C log

v )); (iv) the

image of the natural map Vbad ↪→ V(K) ↠ V(Fmod) ↠ V(Q) does
not contain 2. Then for each v ∈ Vbad, we have the local theory
explained in §2.

Vgood def
= V \ Vbad. Note that Ev, v ∈ Vgood, has bad reduction in

general.
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We shall call
(F/F,E, ℓ, CK ,V,Vbad, ϵ)

an initial Θ-data. From now on, we fix an initial Θ-data, and in the
reminder of my talk, I will explain the following diagram which is
constructed from the given initial Θ-data (I only explain the constructions
at non-archimedean places which are the most important cases in the
original form of IUT):
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Many constructions appeared in the above picture are not difficult to
understand from geometry of coverings of curves. On the other hand, in
IUT, we need to share information via various links between different
Hodge theaters (or different universes) by using fundamental groups (via
anabelian geometry), then we need some group-theoretical descriptions.

Yu Yang (RIMS, Kyoto University) Constructions of Hodge Theaters September 2, 2021 24 / 58



§4: Construction of D-ΘNF-HT

Reference
Section 4 of “S. Mochizuki, Inter-universal Teichmüller theory I:
Construction of Hodge theaters. Publ. Res. Inst. Math. Sci. 57 (2021),
3–207.”
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In the section, I explain the right-hand side:
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D-prime-strips
We put

Dv
def
=

{
πtp
1 (X log

v
) (or Btp(X log

v
)0), if v ∈ Vbad

πét
1 (X−→v) (or Bét(X−→v)

0), if v ∈ Vgood

where B(−)0 denotes the subcategory of the Galois category B(−)
consisting of connected objects, and X−→v

def
= X−→K ×K Kv is determined by

(CK , ϵ) via the picture in the next page:
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Let D def
= {Dv}v∈V. Then we put

D>
def
= {D>,v}v∈V (∼= †D),

where D>,v
∼= Dv for all v ∈ V.

Let F⋇
ℓ

def
= F×

ℓ /{±1}, Vj , j ∈ F⋇
ℓ , a copy of V, and Dj

def
= {Dvj}vj∈Vj

.
Then we put

DJ
def
= {Dj}j∈J ,

where J
def
= F⋇

ℓ . Moreover, we put

D⊚ def
= πét

1 (CK) (or Bét(CK)0).
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⊠-symmetry (on cusps)
For every v ∈ V, recall the following commutative diagram:

Xv
def
= XK ×K Kv

Z/ℓZ−−−−→ Xv
def
= XK ×K Kv

±1

y ±1

y
Cv

def
= CK ×K Kv

degree ℓ−−−−−→ Cv
def
= CK ×K Kv.

We put

LabCuspv
def
= the set of non-zero cusps of Cv.

Then we have

LabCuspv
∼→ F⋇

ℓ (
def
= F×

ℓ /{±1}) = {ℓ
⋇, ℓ⋇ − 1, . . . , 2, 1,−2, . . . ,−ℓ⋇},

where ϵv 7→ the image of 1 in F⋇
ℓ and ℓ⋇

def
= (ℓ− 1)/2.
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Moreover, we put

LabCuspK
def
= the set of non-zero cusps of CK .

Then there exists a natural bijection

LabCuspv
∼→ LabCuspK , v ∈ V,

via the natural homomorphism Cv → CK . This means that the sets

{LabCuspv}v∈V

can be managed by LabCuspK via the above bijections.
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On the other hand, since CK is a “K-core”, we have

Aut(CK) ↪→ Gal(K/Fmod).

Moreover, we define a subgroup

Autϵ(CK)
def
= {σ ∈ Aut(CK) s.t. σ(ϵ) = ϵ}.

Let E[ℓ](F ) ↠ Q(∼= Fℓ) be the quotient determined by the Galois étale
covering XK → XK . Then we have the following

LabCuspK
∼→

(
{Q ↷ OXK

} \ {OXK
}
)
/{±1}

∼→
(
Q \ {0}

)
/{±1}.

Thus, we obtain an exact sequence

1→ Autϵ(CK)→ Aut(CK)→ Aut(Q)/{±1}(∼= F⋇
ℓ )→ 1.
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This means
Aut(CK)/Autϵ(CK) ∼= F⋇

ℓ .

By using anabelian geometry, we have a group-theoretical version of the
above isomorphism:

Aut(D⊚)/Autϵ(D⊚)
∼→ F⋇

ℓ

and Aut(D⊚)/Autϵ(D⊚) is a sub-quotient of the Galois group of the
extension of number fields Gal(K/Fmod). Moreover, we obtain the
following action (=⊠-symmetry arising from arithmetic):

Aut(D⊚)/Autϵ(D⊚) ↷ LabCuspK (= F⋇
ℓ ↷ F⋇

ℓ ).
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(Model) D-NF-bridge
Let v ∈ V. We put

ϕNF
•,v : Dv → D⊚

induced by X
v
→ Cv → CK if v ∈ Vbad and X−→v → Cv → CK if

v ∈ Vgood. We put (as a poly-morphism (i.e., a set of morphisms))

ϕNF
v

def
= Autϵ(D⊚) ◦ ϕNF

•,v ◦ Aut(Dv) : Dv → D⊚.

Recall that Vj , j ∈ F⋇
ℓ , a copy of V. We write

Dj
def
= {Dvj}vj∈Vj

,

where Dvj
∼= Dv. Let

ϕNF
1

def
= {ϕNF

v1
}v1∈V1

: D1 → D⊚

be the poly-morphism determined by ϕNF
v1

, v1 ∈ V1.
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Since Autϵ(D⊚) · ϕNF
1 = ϕNF

1 (i.e., stable under the action of Autϵ(D⊚) by

definition), we obtain an action of F⋇
ℓ

∼→ Aut(D⊚)/Autϵ(D⊚) on ϕNF
1 .

Moreover, we put

ϕNF
j

def
= j · ϕNF

1 : Dj → D⊚, j ∈ F⋇
ℓ .

We shall call the poly-morphism

ϕNF
⋇

def
= {ϕNF

j }j∈F⋇
ℓ
: DJ (or D⋇)

def
= {Dj}j∈F⋇

ℓ
→ D⊚

the (model) D-NF-bridge (recall J = F⋇
ℓ ).
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(Model) D-Θ-bridge
We put

D>
def
= {D>,v}v∈V,

where D>,v
∼= Dv.

Let v ∈ Vbad. Then we have the following morphism

ϕ̃Θ
vj

: Dvj (∼= Dv)
1⃝
↠ Gal(Kv/Kv)

2⃝→ Dv, j ∈ F⋇
ℓ ,

where 1⃝ is the natural surjection πtp
1 (X

v
) ↠ Gal(Kv/Kv). Let us explain

2⃝.
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Recall the tempered coverings whose special fibers are as following:
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Note that {ej1, . . . , e
j
ℓ}j∈F⋇

ℓ
are Kv -rational points of X

v
. Then we define

2⃝ to be “the Galois section determined by a point of {ej1, . . . , e
j
ℓ}j∈F⋇

ℓ
”

(roughly speaking, {ej1, . . . , e
j
ℓ}j∈F⋇

ℓ
is a finite approximation of evaluation

points explained in §2 and the Galois sections contains the informations of
values of Θ

v
explained in §2). Then we have information about values of

theta functions.

We put (as a poly-morphism)

ϕΘ
vj

def
= Aut(D>,v) ◦ ϕ̃Θ

vj
◦ Aut(Dvj ) : Dvj → D>,v, j ∈ F⋇

ℓ .

On the other hand, let v ∈ Vgood. We put (as a full poly-isomorphism)

ϕΘ
vj

: Dvj (
∼= Dv)

∼→ D>,v(∼= Dv), j ∈ F⋇
ℓ .
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Moreover, for global case, we put

ϕΘ
j

def
= {ϕΘ

vj
}vj∈Vj

: Dj
def
= {Dvj}vj∈Vj

→ D>
def
= {D>,v}v∈V.

Then we have

ϕΘ
⋇

def
= {ϕΘ

j }j∈Jdef
= F⋇

ℓ

: DJ (or D⋇)
def
= {Dj}j∈J → D>

and shall call ϕΘ
⋇ the (model) D-Θ-bridge.
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Summary
We have D-ΘNF-HT as following

D>
def
= {D>,v}v∈V

ϕΘ
⋇← DJ

def
= {Dj}

j∈Jdef
= F⋇

ℓ

def
= {{Dvj}vj∈Vj

}j∈J
ϕNF
⋇→ D⊚

and, for each j ∈ J , the maps of sets of cusps (as F⋇
ℓ -torsors)

ϕLC
j : LabCusp(D⊚)

∼→ LabCusp(Dj)
∼→ LabCusp(D>), ϵ 7→ j.
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§5: Construction of D-Θell-HT

Reference
Section 5 and Section 6 of “S. Mochizuki, Inter-universal Teichmüller
theory I: Construction of Hodge theaters. Publ. Res. Inst. Math. Sci. 57
(2021), 3–207.”
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In this section, we explain the left-hand side:
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⊞-symmetry (on cusps)
For each v ∈ V, we put

LabCusp±v
def
= the set of cusps of Xv.

Then we have the natural action of Gal(Xv/Cv)
∼= {±1} on

LabCusp±v
∼→ Fℓ = {ℓ⋇, . . . , 1, 0,−1, . . . ,−ℓ⋇}.

On the other hand, we put

LabCusp±K
def
= the set of cusps of XK .

Then we may manage the sets of cusps {LabCusp±v }v∈V via the natural
bijection induced by Xv → XK :

LabCusp±v
∼→ LabCusp±K , v ∈ V.
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We put

D≻
def
= {D≻,v}v∈V,

where D≻,v
∼= Dv. Note that LabCusp±v can be mono-anabelian

reconstructed from D≻,v. On the other hand, we put

D⊚± def
= πét

1 (XK) (or Bét(XK)0).

Note that LabCusp±K can be mono-anabelian reconstructed from D⊚±.
Then we obtain a group-theoretical version of the above bijection of cusps:

LabCusp±(D≻)
∼→ LabCusp±(D⊚±).

We may identify LabCusp±(D≻) with LabCusp±K(D⊚±) via the above
bijection. Moreover, there is a natural action

AutK(XK)(∼= F⋊±
ℓ

def
= Fℓ ⋊ {±1}) ↷ LabCusp±K(∼= Fℓ).
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In fact, the above action can be expressed group-theoretically. We put

Aut±(D⊚±)
def
= ker(Aut(D⊚±)→ F⋇

ℓ ),

where the homomorphism is determined by the quotient E[ℓ](F)→ Q and
Q ∼= Fℓ is introduced in §4, and put

Autcusp(D⊚±) ⊆ Aut(D⊚±)

the subgroup of automorphisms which fix the cusps of XK . Then we have
the following action (=⊞-symmetry arising from geometry):

(AutK(XK) ∼=) Aut±(D⊚±)/Autcusp(D⊚±) ↷ LabCusp±K(D⊚±)

which can be regarded as
F⋊±
ℓ ↷ Fℓ

by using ϵ.
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(Model) D-Θ±-bridge

Let T ∼= LabCusp±K(D⊚±) ∼= {ℓ⋇, . . . , 1, 0,−1, . . . ,−ℓ⋇} with action of
F⋊±
ℓ and Vt, t ∈ T , a copy of V. We put a poly-isomorphism

ϕΘ±
vt

: Dvt(
∼= Dv)

Aut+(D⊚±)-orbit
∼→ D≻,v,

where, roughly speaking, Aut+(D⊚±) ⊆ Aut±(D⊚±) is the subgroup such
that σ(“positive labels”) = “positive labels” for all σ ∈ Aut+(D⊚±).
Moreover, we put

ϕΘ±
t

def
= {ϕΘ±

vt
}vt∈Vt

: Dt
def
= {Dvt}vt∈Vt

→ D≻
def
= {D≻,v}v∈V.

Then we shall put

ϕΘ±
±

def
= {ϕΘ±

t }t∈T : DT (or D±)
def
= {Dt}t∈T → D≻

and call ϕΘ±
± the (model) D-Θ±-bridge.
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(Model) D-Θell-bridge
For v ∈ V, we put

ϕΘell

•,v : Dv → D⊚±

the morphism determined by the natural morphism X
v
→ Xv → XK if

v ∈ Vbad and X−→v → Xv → XK if v ∈ Vgood. Write

ϕΘell

v0

def
= Autcusp(D⊚±) ◦ ϕΘell

•,v ◦ Aut+(Dv0) : Dv0 → D
⊚±,

ϕΘell

0
def
= {ϕΘell

v0
}v0∈V0

: D0
def
= {Dv0}v0∈V0

→ D⊚±.

Note that since

t ∈ T (∼= Fℓ) ⊆ F⋊±
ℓ
∼= Aut±(D⊚±)/Autcusp(D⊚±) ↷ ϕΘell

0 ,

we put

ϕΘell

t
def
= t · ϕΘell

0 : Dt
def
= {Dvt}vt∈Vt

→ D⊚±.
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We shall put

ϕΘell

±
def
= {ϕΘell

t }t∈T : DT
def
= {Dt}t∈T → D⊚±

and call ϕΘell

± the (model) D-Θell-bridge.

Summary

We have D-Θ±ell-HT as following:

D≻
def
= {D≻,v}v∈V

ϕΘ±
±← DT

def
= {Dt}t∈T (∼=Fℓ)

def
= {{Dvt}vt∈Vt

}t∈T
ϕΘell

±→ D⊚±.

Note that we do not have any information about theta functions by the
definition of D-Θ±ell-HT . To obtain that, we need to “glue” D-Θ±ell-HT
with D-ΘNF-HT .
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§6: Θ±ellNF-Hodge theaters

Reference
Section 6 of “S. Mochizuki, Inter-universal Teichmüller theory I:
Construction of Hodge theaters. Publ. Res. Inst. Math. Sci. 57 (2021),
3–207.”
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D-ΘNF-Hodge theater
We shall call

†D>
ϕΘ
⋇← †DJ

ϕNF
⋇→ †D⊚

a D-ΘNF-Hodge theater if it is “isomorphic” to (i.e., poly-isomorphisms
†D>

∼→ D>,
†DJ

∼→ DJ ,
†D⊚ ∼→ D⊚ satisfy certain compatible conditions)

D>
ϕΘ
⋇← DJ

ϕNF
⋇→ D⊚.
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D-Θ±ell-Hodge theater
We shall call

†D≻
ϕΘ±
±← †DT

ϕΘell

±→ †D⊚±

a D-Θ±ell-Hodge theater if it is “isomorphic” to (i.e., poly-isomorphisms
†D≻

∼→ D≻,
†DT

∼→ DT ,
†D⊚± ∼→ D⊚± satisfy certain compatible

conditions)

D≻
ϕΘ±
±← DT

ϕΘell

±→ D⊚±.
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D-Θ±ellNF-Hodge theater
We put the following identifications (i.e., “a gluing”)

(T \ {0})/{±1} = J.

Then we can construct a D-Θ-bridge

†ϕΘ
⋇[

†ϕΘ±
± ] : †DJ

def
= {Dt}t∈J → †D>

from any D-Θ±-bridge †ϕΘ±
± : †DT → †D≻. Then we shall call a triple

(D-Θ±ell-HT ,D-ΘNF-HT , †ϕΘ
⋇[

†ϕΘ±
± ] ∼= †ϕΘ

⋇)

D-Θ±ellNF-Hodge theater.
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Then we obtain the following diagram mentioned above.
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Frobenioids
Let D be a D-prime-strip (i.e., a fundamental group or (the subcategory of
connected objects of) a Galois category). We put

F

the Frobenioid whose base is D. Roughly speaking, F is a category over D
whose objects are “rational functions” on objects (i.e., coverings) of D.

Θ±ellNF-Hodge theater

We obtain the following which is called Θ±ellNF-Hodge theater, and
whose base is D-Θ±ellNF-Hodge theater:
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Thank you for the attention!
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